Hide

Problem H
Leynitölur

Languages en is

Jón has a list of his 100 favourite numbers, all integers in the interval from $0$ to $10^{18}$. He cares deeply about these numbers and doesn’t want anyone finding out about them. He has decided to encrypt the numbers, doing it in the following way:

  1. He takes a value $x$ from his list.

  2. He multiplies $x$ with the numbers $230\, 309\, 227$ and then adds the result to $68\, 431\, 307$. He then divides the result by $2^{64}$ and calls the remainder of the division $y$.

  3. He now forgets the number $x$ and instead stores $y$ which is the encrypted value.

He did this to all his numbers in the list and now has 100 encrypted numbres. But he forgot the most important part: he has no idea how he can decrypt his numbers. Can you help him?

Input

The input contains a hundred integers, each an encrypted number, one on each line.

Output

Print one line for each encrypted number in the input. This line should contain the decrypted number, which is an integer between $0$ and $10^{18}$, or $0$ if you do now know what the decrypted number is. You can assume that there is exactly one number between $0$ and $10^{18}$ which is the decrypted version of the corresponding number in the input. I.e. if it is encrypted again, it becomes the value in the input.

Scoring

The solution will be run on a list of 100 encrypted numbers. The list is always the same and it will be shown here below. The solution gets 1 point for each value it decrypts.

Jón also gave the following information about the original list of numbers:

  • 10 numbers are very small ($< 10$)

  • 10 numbers are rather small ($< 1000$)

  • 7 numbers are “Perfect numbers”

  • 10 numbers are “Factorial values”

  • 10 numbers are of the form $2^n$

  • 10 numbers are “Fibonacci numbers”

  • 10 numbers are “Catalan numbers”

  • 10 numbers are “Motzkin numbers”

  • 10 numbers are “Triangular numbers”

  • 13 numbers are very big ($< 10^{18}$)

Explanation of Sample Input

In the sample input a list of 100 encrypted numbers is given, the one your solution will be tested on. The output in the sample gives an example of what your solution could print out. All values there, except three, are $0$.

On line 5 the output returned the number $6$. Let us try encrypting this number:

  1. Multiply $6$ by $230\, 309\, 227$ to get $1\, 381\, 855\, 362$.

  2. We then add $68\, 431\, 307$ to the result and get $1\, 450\, 286\, 669$.

  3. Then we perform the division $1\, 450\, 286\, 669 / 2^{64}$ and get $0$ with the remainder $1\, 450\, 286\, 669$.

  4. The remainder $1\, 450\, 286\, 669$ is thus the encrypted version of the number $6$.

If we look at line 5 in the input, then we find exactly the number $1\, 450\, 286\, 669$ which was the encrypted value Jói wanted to decrypt. The answer $6$ is thus correct and the solution gets one point for this value. It just so happens that the number $6$ is also both a “Perect number” and a very small number ($< 10$).

On line 38 of the input the solution returned the number $42$. Let us try encrypting this number:

  1. Multiply $42$ by $230\, 309\, 227$ to get $9\, 672\, 987\, 534$.

  2. We then add $68\, 431\, 307$ to the result and get $9\, 741\, 418\, 841$.

  3. We then perform the division $9\, 741\, 418\, 841 / 2^{64}$ and get $0$ with the remainder $9\, 741\, 418\, 841$.

  4. The remainder $9\, 741\, 418\, 841$ is thus the encrypted version of the number $42$.

If we look at line 38 of the input, it was the number $68\, 431\, 307$ that Jói wanted to decrypt. The answer $42$ is thus not correct, so the solution gets no points for this number.

On line 40 of the output the solution output the number $806\, 515\, 533\, 049\, 393$. Let us try to encrypt this number:

  1. Multiply $806\, 515\, 533\, 049\, 393$ by $230\, 309\, 227$ to get $185\, 747\, 968\, 980\, 098\, 654\, 649\, 211$.

  2. Then add $68\, 431\, 307$ to the result to get $185\, 747\, 968\, 980\, 098\, 723\, 080\, 518$.

  3. Then perform the division $185\, 747\, 968\, 980\, 098\, 723\, 080\, 518 / 2^{64}$ to get $10\, 069$ with the remainder $7\, 702\, 901\, 917\, 247\, 859\, 014$.

  4. The remainder $7\, 702\, 901\, 917\, 247\, 859\, 014$ is thus the encrypted version of $806\, 515\, 533\, 049\, 393$.

If we look at line 40 of the input, it was the number $7\, 702\, 901\, 917\, 247\, 859\, 014$ that Jói wanted to decrypt. The answer $806\, 515\, 533\, 049\, 393$ is thus correct and the solution gets one point for this number. It just so happens that $806\, 515\, 533\, 049\, 393$ is a “Fibonacci number”.

Sample Input 1 Sample Output 1
18223710894738859083
13206715060184165835
10185240380512959299
1931973892517323
1450286669
6021567682509141451
138714585961
422919574979260288
9635054942852
14552931137501048267
835746191368907
8770042884959775595
6164323997686895178
16905399806933083155
1311420849701858561
14908754392032399994
12890726524107255501
1180101699970319594
15800253748647522238
1680595896
11695533784197154595
88507174475
57876047284
3783748257302582136
2545702210039907996
83574680725067
6341068275406089675
3713883211570731520
16300997420262959118
214025703190
3698343441921813963
16814363719088675361
12393906174592036299
298740534
6517089663
14808221835
2622534442265585971
68431307
3863947716603339
7702901917247859014
47742441296
214256012417
2809041190924859584
615948277489187
759358988
5222818139880373393
1910905123
7910173006526044074
1160826935387
7726952018181579
529049761
218171269276
47051513615
92299468167589928
17357274356146956201
7414039778265390868
989668215
989170598000471499
13206654686002163147
14928293174154046923
18303861531118430445
17742860839300167228
1872021828363
11308186127620784250
36457289173
5883968300900284717
15319152107597547134
9473861667483854665
3981937021227917058
17960730271744214948
9741418841
1434140347029352907
5718061173776289753
9221431121542298880
7710162562126720459
12843829917114508059
13700707387741159706
71694600904
12137560070380009487
15469864720086085067
2426027911978121844
140557059777
15930479467699770909
16819631862868750397
11399132061084986557
4008544522317321026
3457167503216882366
29858391437908637
114301807899
9593390538144192759
407017019262885437
15420325124185009611
1219977442
1631220783811782091
27705538547
1450286669
1978326102387011019
1594237062672645103
11887301847946087637
2141214350
875611033061344128
137438953472
8944394323791464
8388608
6
1307674368000
602
1836311903
41835
355687428096000
3628800
451909860726587616
743301543085819453
263747951750360
679891637638612258
724066394573497037
55534064877048198
14544636039226909
192137918101841817
7
264118168634493448
384
251
61305790721611591
832721640469329331
362880
576460752303423488
2750016719520991
420196140727489673
929
6402373705728000
73007772802
288230376151711744
1
28
64
91482563640
0
16777216
806515533049393
207
930
885703806313795871
2674440
3
343059613650
8
848821429864631901
5040
33550336
2
947
204
400763223
108500229861914394
65346306570478875
4
4294967296
137438691328
121645100408832000
603441230355458022
13933569346707
8128
738009091801197773
158
212336130412243110
66368199913921497
179224005103730170
22944749046030949
205043723361104587
42
6227020800
822173150480239530
11130037491592671
72057594037927936
160500643816367088
139583862445
311
556704809728838604
4503599627370496
953467954114363
610
897145272235330422
182829778442895830
38756443662964566
426548945951821605
259695496911122585
129644790
496
150145796978065540
1767263190
144115188075855872
5
87178291200
120
6
8589869056
498522796180270956
541595904581297566
9